direct product, metabelian, nilpotent (class 3), monomial, 3-elementary
Aliases: C2×C32.24He3, C6.1C3≀C3, C32⋊C9⋊9C6, (C6×He3)⋊1C3, (C3×He3)⋊13C6, C33.1(C3×C6), (C3×C6).14He3, C32.29(C2×He3), (C32×C6).1C32, C6.1(He3⋊C3), C3.4(C2×C3≀C3), (C2×C32⋊C9)⋊1C3, C3.3(C2×He3⋊C3), SmallGroup(486,63)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C32.24He3
G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ede-1=cd=dc, ce=ec, cf=fc, fdf-1=bde-1, fef-1=b-1e >
Subgroups: 414 in 94 conjugacy classes, 24 normal (8 characteristic)
C1, C2, C3, C3, C6, C6, C9, C32, C32, C18, C3×C6, C3×C6, C3×C9, He3, C33, C33, C3×C18, C2×He3, C32×C6, C32×C6, C32⋊C9, C3×He3, C2×C32⋊C9, C6×He3, C32.24He3, C2×C32.24He3
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C2×He3, C3≀C3, He3⋊C3, C2×C3≀C3, C2×He3⋊C3, C32.24He3, C2×C32.24He3
(1 88)(2 89)(3 90)(4 84)(5 82)(6 83)(7 87)(8 85)(9 86)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 109)(29 110)(30 111)(31 112)(32 113)(33 114)(34 115)(35 116)(36 117)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)(49 50 51)(52 53 54)(55 56 57)(58 59 60)(61 62 63)(64 65 66)(67 68 69)(70 71 72)(73 74 75)(76 77 78)(79 80 81)(82 83 84)(85 86 87)(88 89 90)(91 92 93)(94 95 96)(97 98 99)(100 101 102)(103 104 105)(106 107 108)(109 110 111)(112 113 114)(115 116 117)(118 119 120)(121 122 123)(124 125 126)(127 128 129)(130 131 132)(133 134 135)(136 137 138)(139 140 141)(142 143 144)(145 146 147)(148 149 150)(151 152 153)(154 155 156)(157 158 159)(160 161 162)
(1 14 10)(2 15 11)(3 13 12)(4 162 8)(5 160 9)(6 161 7)(16 23 19)(17 24 20)(18 22 21)(25 32 28)(26 33 29)(27 31 30)(34 41 37)(35 42 38)(36 40 39)(43 50 46)(44 51 47)(45 49 48)(52 59 55)(53 60 56)(54 58 57)(61 68 64)(62 69 65)(63 67 66)(70 77 73)(71 78 74)(72 76 75)(79 86 82)(80 87 83)(81 85 84)(88 95 91)(89 96 92)(90 94 93)(97 104 100)(98 105 101)(99 103 102)(106 113 109)(107 114 110)(108 112 111)(115 122 118)(116 123 119)(117 121 120)(124 131 127)(125 132 128)(126 130 129)(133 140 136)(134 141 137)(135 139 138)(142 149 145)(143 150 146)(144 148 147)(151 158 154)(152 159 155)(153 157 156)
(1 25 16)(2 26 17)(3 27 18)(4 158 150)(5 159 148)(6 157 149)(7 153 142)(8 151 143)(9 152 144)(10 28 19)(11 29 20)(12 30 21)(13 31 22)(14 32 23)(15 33 24)(34 55 43)(35 56 44)(36 57 45)(37 59 46)(38 60 47)(39 58 48)(40 54 49)(41 52 50)(42 53 51)(61 87 72)(62 85 70)(63 86 71)(64 80 75)(65 81 73)(66 79 74)(67 82 78)(68 83 76)(69 84 77)(88 106 97)(89 107 98)(90 108 99)(91 109 100)(92 110 101)(93 111 102)(94 112 103)(95 113 104)(96 114 105)(115 136 124)(116 137 125)(117 138 126)(118 140 127)(119 141 128)(120 139 129)(121 135 130)(122 133 131)(123 134 132)(145 161 156)(146 162 154)(147 160 155)
(4 7 160)(5 8 161)(6 9 162)(16 23 19)(17 24 20)(18 22 21)(25 28 32)(26 29 33)(27 30 31)(34 35 36)(37 38 39)(40 41 42)(43 51 48)(44 49 46)(45 50 47)(52 56 58)(53 57 59)(54 55 60)(61 63 62)(64 66 65)(67 69 68)(70 76 74)(71 77 75)(72 78 73)(79 84 87)(80 82 85)(81 83 86)(97 104 100)(98 105 101)(99 103 102)(106 109 113)(107 110 114)(108 111 112)(115 116 117)(118 119 120)(121 122 123)(124 132 129)(125 130 127)(126 131 128)(133 137 139)(134 138 140)(135 136 141)(142 144 143)(145 147 146)(148 150 149)(151 157 155)(152 158 156)(153 159 154)
(1 61 34)(2 62 35)(3 63 36)(4 138 111)(5 136 109)(6 137 110)(7 141 114)(8 139 112)(9 140 113)(10 64 37)(11 65 38)(12 66 39)(13 67 40)(14 68 41)(15 69 42)(16 70 43)(17 71 44)(18 72 45)(19 73 46)(20 74 47)(21 75 48)(22 76 49)(23 77 50)(24 78 51)(25 79 52)(26 80 53)(27 81 54)(28 82 55)(29 83 56)(30 84 57)(31 85 58)(32 86 59)(33 87 60)(88 142 115)(89 143 116)(90 144 117)(91 145 118)(92 146 119)(93 147 120)(94 148 121)(95 149 122)(96 150 123)(97 151 124)(98 152 125)(99 153 126)(100 154 127)(101 155 128)(102 156 129)(103 157 130)(104 158 131)(105 159 132)(106 160 133)(107 161 134)(108 162 135)
G:=sub<Sym(162)| (1,88)(2,89)(3,90)(4,84)(5,82)(6,83)(7,87)(8,85)(9,86)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81)(82,83,84)(85,86,87)(88,89,90)(91,92,93)(94,95,96)(97,98,99)(100,101,102)(103,104,105)(106,107,108)(109,110,111)(112,113,114)(115,116,117)(118,119,120)(121,122,123)(124,125,126)(127,128,129)(130,131,132)(133,134,135)(136,137,138)(139,140,141)(142,143,144)(145,146,147)(148,149,150)(151,152,153)(154,155,156)(157,158,159)(160,161,162), (1,14,10)(2,15,11)(3,13,12)(4,162,8)(5,160,9)(6,161,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30)(34,41,37)(35,42,38)(36,40,39)(43,50,46)(44,51,47)(45,49,48)(52,59,55)(53,60,56)(54,58,57)(61,68,64)(62,69,65)(63,67,66)(70,77,73)(71,78,74)(72,76,75)(79,86,82)(80,87,83)(81,85,84)(88,95,91)(89,96,92)(90,94,93)(97,104,100)(98,105,101)(99,103,102)(106,113,109)(107,114,110)(108,112,111)(115,122,118)(116,123,119)(117,121,120)(124,131,127)(125,132,128)(126,130,129)(133,140,136)(134,141,137)(135,139,138)(142,149,145)(143,150,146)(144,148,147)(151,158,154)(152,159,155)(153,157,156), (1,25,16)(2,26,17)(3,27,18)(4,158,150)(5,159,148)(6,157,149)(7,153,142)(8,151,143)(9,152,144)(10,28,19)(11,29,20)(12,30,21)(13,31,22)(14,32,23)(15,33,24)(34,55,43)(35,56,44)(36,57,45)(37,59,46)(38,60,47)(39,58,48)(40,54,49)(41,52,50)(42,53,51)(61,87,72)(62,85,70)(63,86,71)(64,80,75)(65,81,73)(66,79,74)(67,82,78)(68,83,76)(69,84,77)(88,106,97)(89,107,98)(90,108,99)(91,109,100)(92,110,101)(93,111,102)(94,112,103)(95,113,104)(96,114,105)(115,136,124)(116,137,125)(117,138,126)(118,140,127)(119,141,128)(120,139,129)(121,135,130)(122,133,131)(123,134,132)(145,161,156)(146,162,154)(147,160,155), (4,7,160)(5,8,161)(6,9,162)(16,23,19)(17,24,20)(18,22,21)(25,28,32)(26,29,33)(27,30,31)(34,35,36)(37,38,39)(40,41,42)(43,51,48)(44,49,46)(45,50,47)(52,56,58)(53,57,59)(54,55,60)(61,63,62)(64,66,65)(67,69,68)(70,76,74)(71,77,75)(72,78,73)(79,84,87)(80,82,85)(81,83,86)(97,104,100)(98,105,101)(99,103,102)(106,109,113)(107,110,114)(108,111,112)(115,116,117)(118,119,120)(121,122,123)(124,132,129)(125,130,127)(126,131,128)(133,137,139)(134,138,140)(135,136,141)(142,144,143)(145,147,146)(148,150,149)(151,157,155)(152,158,156)(153,159,154), (1,61,34)(2,62,35)(3,63,36)(4,138,111)(5,136,109)(6,137,110)(7,141,114)(8,139,112)(9,140,113)(10,64,37)(11,65,38)(12,66,39)(13,67,40)(14,68,41)(15,69,42)(16,70,43)(17,71,44)(18,72,45)(19,73,46)(20,74,47)(21,75,48)(22,76,49)(23,77,50)(24,78,51)(25,79,52)(26,80,53)(27,81,54)(28,82,55)(29,83,56)(30,84,57)(31,85,58)(32,86,59)(33,87,60)(88,142,115)(89,143,116)(90,144,117)(91,145,118)(92,146,119)(93,147,120)(94,148,121)(95,149,122)(96,150,123)(97,151,124)(98,152,125)(99,153,126)(100,154,127)(101,155,128)(102,156,129)(103,157,130)(104,158,131)(105,159,132)(106,160,133)(107,161,134)(108,162,135)>;
G:=Group( (1,88)(2,89)(3,90)(4,84)(5,82)(6,83)(7,87)(8,85)(9,86)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,109)(29,110)(30,111)(31,112)(32,113)(33,114)(34,115)(35,116)(36,117)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36)(37,38,39)(40,41,42)(43,44,45)(46,47,48)(49,50,51)(52,53,54)(55,56,57)(58,59,60)(61,62,63)(64,65,66)(67,68,69)(70,71,72)(73,74,75)(76,77,78)(79,80,81)(82,83,84)(85,86,87)(88,89,90)(91,92,93)(94,95,96)(97,98,99)(100,101,102)(103,104,105)(106,107,108)(109,110,111)(112,113,114)(115,116,117)(118,119,120)(121,122,123)(124,125,126)(127,128,129)(130,131,132)(133,134,135)(136,137,138)(139,140,141)(142,143,144)(145,146,147)(148,149,150)(151,152,153)(154,155,156)(157,158,159)(160,161,162), (1,14,10)(2,15,11)(3,13,12)(4,162,8)(5,160,9)(6,161,7)(16,23,19)(17,24,20)(18,22,21)(25,32,28)(26,33,29)(27,31,30)(34,41,37)(35,42,38)(36,40,39)(43,50,46)(44,51,47)(45,49,48)(52,59,55)(53,60,56)(54,58,57)(61,68,64)(62,69,65)(63,67,66)(70,77,73)(71,78,74)(72,76,75)(79,86,82)(80,87,83)(81,85,84)(88,95,91)(89,96,92)(90,94,93)(97,104,100)(98,105,101)(99,103,102)(106,113,109)(107,114,110)(108,112,111)(115,122,118)(116,123,119)(117,121,120)(124,131,127)(125,132,128)(126,130,129)(133,140,136)(134,141,137)(135,139,138)(142,149,145)(143,150,146)(144,148,147)(151,158,154)(152,159,155)(153,157,156), (1,25,16)(2,26,17)(3,27,18)(4,158,150)(5,159,148)(6,157,149)(7,153,142)(8,151,143)(9,152,144)(10,28,19)(11,29,20)(12,30,21)(13,31,22)(14,32,23)(15,33,24)(34,55,43)(35,56,44)(36,57,45)(37,59,46)(38,60,47)(39,58,48)(40,54,49)(41,52,50)(42,53,51)(61,87,72)(62,85,70)(63,86,71)(64,80,75)(65,81,73)(66,79,74)(67,82,78)(68,83,76)(69,84,77)(88,106,97)(89,107,98)(90,108,99)(91,109,100)(92,110,101)(93,111,102)(94,112,103)(95,113,104)(96,114,105)(115,136,124)(116,137,125)(117,138,126)(118,140,127)(119,141,128)(120,139,129)(121,135,130)(122,133,131)(123,134,132)(145,161,156)(146,162,154)(147,160,155), (4,7,160)(5,8,161)(6,9,162)(16,23,19)(17,24,20)(18,22,21)(25,28,32)(26,29,33)(27,30,31)(34,35,36)(37,38,39)(40,41,42)(43,51,48)(44,49,46)(45,50,47)(52,56,58)(53,57,59)(54,55,60)(61,63,62)(64,66,65)(67,69,68)(70,76,74)(71,77,75)(72,78,73)(79,84,87)(80,82,85)(81,83,86)(97,104,100)(98,105,101)(99,103,102)(106,109,113)(107,110,114)(108,111,112)(115,116,117)(118,119,120)(121,122,123)(124,132,129)(125,130,127)(126,131,128)(133,137,139)(134,138,140)(135,136,141)(142,144,143)(145,147,146)(148,150,149)(151,157,155)(152,158,156)(153,159,154), (1,61,34)(2,62,35)(3,63,36)(4,138,111)(5,136,109)(6,137,110)(7,141,114)(8,139,112)(9,140,113)(10,64,37)(11,65,38)(12,66,39)(13,67,40)(14,68,41)(15,69,42)(16,70,43)(17,71,44)(18,72,45)(19,73,46)(20,74,47)(21,75,48)(22,76,49)(23,77,50)(24,78,51)(25,79,52)(26,80,53)(27,81,54)(28,82,55)(29,83,56)(30,84,57)(31,85,58)(32,86,59)(33,87,60)(88,142,115)(89,143,116)(90,144,117)(91,145,118)(92,146,119)(93,147,120)(94,148,121)(95,149,122)(96,150,123)(97,151,124)(98,152,125)(99,153,126)(100,154,127)(101,155,128)(102,156,129)(103,157,130)(104,158,131)(105,159,132)(106,160,133)(107,161,134)(108,162,135) );
G=PermutationGroup([[(1,88),(2,89),(3,90),(4,84),(5,82),(6,83),(7,87),(8,85),(9,86),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,109),(29,110),(30,111),(31,112),(32,113),(33,114),(34,115),(35,116),(36,117),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36),(37,38,39),(40,41,42),(43,44,45),(46,47,48),(49,50,51),(52,53,54),(55,56,57),(58,59,60),(61,62,63),(64,65,66),(67,68,69),(70,71,72),(73,74,75),(76,77,78),(79,80,81),(82,83,84),(85,86,87),(88,89,90),(91,92,93),(94,95,96),(97,98,99),(100,101,102),(103,104,105),(106,107,108),(109,110,111),(112,113,114),(115,116,117),(118,119,120),(121,122,123),(124,125,126),(127,128,129),(130,131,132),(133,134,135),(136,137,138),(139,140,141),(142,143,144),(145,146,147),(148,149,150),(151,152,153),(154,155,156),(157,158,159),(160,161,162)], [(1,14,10),(2,15,11),(3,13,12),(4,162,8),(5,160,9),(6,161,7),(16,23,19),(17,24,20),(18,22,21),(25,32,28),(26,33,29),(27,31,30),(34,41,37),(35,42,38),(36,40,39),(43,50,46),(44,51,47),(45,49,48),(52,59,55),(53,60,56),(54,58,57),(61,68,64),(62,69,65),(63,67,66),(70,77,73),(71,78,74),(72,76,75),(79,86,82),(80,87,83),(81,85,84),(88,95,91),(89,96,92),(90,94,93),(97,104,100),(98,105,101),(99,103,102),(106,113,109),(107,114,110),(108,112,111),(115,122,118),(116,123,119),(117,121,120),(124,131,127),(125,132,128),(126,130,129),(133,140,136),(134,141,137),(135,139,138),(142,149,145),(143,150,146),(144,148,147),(151,158,154),(152,159,155),(153,157,156)], [(1,25,16),(2,26,17),(3,27,18),(4,158,150),(5,159,148),(6,157,149),(7,153,142),(8,151,143),(9,152,144),(10,28,19),(11,29,20),(12,30,21),(13,31,22),(14,32,23),(15,33,24),(34,55,43),(35,56,44),(36,57,45),(37,59,46),(38,60,47),(39,58,48),(40,54,49),(41,52,50),(42,53,51),(61,87,72),(62,85,70),(63,86,71),(64,80,75),(65,81,73),(66,79,74),(67,82,78),(68,83,76),(69,84,77),(88,106,97),(89,107,98),(90,108,99),(91,109,100),(92,110,101),(93,111,102),(94,112,103),(95,113,104),(96,114,105),(115,136,124),(116,137,125),(117,138,126),(118,140,127),(119,141,128),(120,139,129),(121,135,130),(122,133,131),(123,134,132),(145,161,156),(146,162,154),(147,160,155)], [(4,7,160),(5,8,161),(6,9,162),(16,23,19),(17,24,20),(18,22,21),(25,28,32),(26,29,33),(27,30,31),(34,35,36),(37,38,39),(40,41,42),(43,51,48),(44,49,46),(45,50,47),(52,56,58),(53,57,59),(54,55,60),(61,63,62),(64,66,65),(67,69,68),(70,76,74),(71,77,75),(72,78,73),(79,84,87),(80,82,85),(81,83,86),(97,104,100),(98,105,101),(99,103,102),(106,109,113),(107,110,114),(108,111,112),(115,116,117),(118,119,120),(121,122,123),(124,132,129),(125,130,127),(126,131,128),(133,137,139),(134,138,140),(135,136,141),(142,144,143),(145,147,146),(148,150,149),(151,157,155),(152,158,156),(153,159,154)], [(1,61,34),(2,62,35),(3,63,36),(4,138,111),(5,136,109),(6,137,110),(7,141,114),(8,139,112),(9,140,113),(10,64,37),(11,65,38),(12,66,39),(13,67,40),(14,68,41),(15,69,42),(16,70,43),(17,71,44),(18,72,45),(19,73,46),(20,74,47),(21,75,48),(22,76,49),(23,77,50),(24,78,51),(25,79,52),(26,80,53),(27,81,54),(28,82,55),(29,83,56),(30,84,57),(31,85,58),(32,86,59),(33,87,60),(88,142,115),(89,143,116),(90,144,117),(91,145,118),(92,146,119),(93,147,120),(94,148,121),(95,149,122),(96,150,123),(97,151,124),(98,152,125),(99,153,126),(100,154,127),(101,155,128),(102,156,129),(103,157,130),(104,158,131),(105,159,132),(106,160,133),(107,161,134),(108,162,135)]])
70 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3V | 6A | ··· | 6H | 6I | ··· | 6V | 9A | ··· | 9L | 18A | ··· | 18L |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 9 | ··· | 9 | 1 | ··· | 1 | 9 | ··· | 9 | 9 | ··· | 9 | 9 | ··· | 9 |
70 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | He3 | C2×He3 | C3≀C3 | He3⋊C3 | C2×C3≀C3 | C2×He3⋊C3 |
kernel | C2×C32.24He3 | C32.24He3 | C2×C32⋊C9 | C6×He3 | C32⋊C9 | C3×He3 | C3×C6 | C32 | C6 | C6 | C3 | C3 |
# reps | 1 | 1 | 4 | 4 | 4 | 4 | 2 | 2 | 12 | 12 | 12 | 12 |
Matrix representation of C2×C32.24He3 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 18 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 0 |
0 | 0 | 0 | 0 | 0 | 18 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 6 | 0 |
0 | 0 | 0 | 0 | 18 | 1 |
0 | 0 | 0 | 0 | 18 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 7 | 0 |
0 | 0 | 0 | 8 | 0 | 11 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 8 | 0 | 11 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,1,0,0,0,0,0,6,18,18,0,0,0,0,1,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,1,8,0,0,0,0,7,0,0,0,0,0,0,11],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,8,0,0,0,0,1,0,0,0,0,0,0,11] >;
C2×C32.24He3 in GAP, Magma, Sage, TeX
C_2\times C_3^2._{24}{\rm He}_3
% in TeX
G:=Group("C2xC3^2.24He3");
// GroupNames label
G:=SmallGroup(486,63);
// by ID
G=gap.SmallGroup(486,63);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,224,873,735]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*d*e^-1=c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=b*d*e^-1,f*e*f^-1=b^-1*e>;
// generators/relations